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Femtosecond laser-induced strain waves in InSb are studied by means of time-resolved x-ray diffraction. The
temporal evolution of the measured x-ray diffracted intensity reveals that the lattice dynamics depends on the
time scale of energy transfer from excited carriers to the lattice. A framework that accounts for this energy-
transfer time �lattice heating time� is presented and applied to model the fluence dependence of the transient
x-ray diffraction data. In this model the initial strain wave dynamics depends crucially on the lattice heating
time, which decreases with increasing fluence.

DOI: 10.1103/PhysRevB.78.174302 PACS number�s�: 62.30.�d, 63.20.�e

I. INTRODUCTION

Above band-gap excitation of a semiconductor crystal
with a subpicosecond laser pulse with pulse energies just
below the damage threshold puts the crystal into a highly
stressed state. Stress is typically relieved by lattice expansion
that starts at the crystal surface and subsequently drives a
traveling expansion and compression strain wave into the
bulk at the longitudinal speed of sound.1,2 The time-
dependent strain wave can be thought as a superposition of
coherent phonons with wave vectors centered approximately
about the inverse of laser penetration depth.3 These transient
coherent lattice dynamics have been studied in a variety of
materials both by observing the resultant changes in optical
properties �reflectivity�1,4,5 and by using x-ray
diffraction.2,6–8 In contrast to optical reflectivity measure-
ments, time-resolved x-ray diffraction can directly observe
the small shifts in interatomic distance associated with a
strain wave as it propagates into the bulk of the crystal. The
sensitivity of x-ray diffraction to coherent lattice dynamics
has been demonstrated in many experiments in both Bragg
and Laue geometries.9 Generally, these studies are useful in
deducing the acoustic properties of the excited crystal and
testing models of electron-phonon coupling.3,4,7

A simple model that describes the generation of a strain
wave in a laser-excited solid was proposed by Thomsen et
al.1 They solved the elastic equations assuming that thermal
stress is instantaneously generated in an absorbing solid.
This model has successfully been applied to explain the re-
sults of both optical scattering and x-ray diffraction
measurements.1,2,9 In principle, one might expect that the
model predicts reasonably the structure of the strain wave at
times well after carrier-lattice thermalization. During the
thermalization process, on the other hand, the assumption of
instantaneous heating may overestimate the strain. For in-
stance, in polar semiconductors such as InSb, carrier-lattice
energy exchange is thought to be mediated by longitudinal-
optical �LO� phonons.10 In these systems, the excess energy
of photoexcited carriers is first transferred to small momen-
tum LO phonons, which subsequently decay to acoustic
phonons due to the anharmonicity of the crystal potential.
The intrinsic lifetime of LO phonons is expected to govern
the carrier-lattice thermalization dynamics10,11 and thus the
thermal component of the strain evolution. Intervalley scat-

tering of carriers, significant for dense electron-hole plasmas
and high carrier energies, may further influence the thermal-
ization time scale by reheating the carriers and reducing the
cooling rate, whereas deformation-potential and piezoelectric
scatterings with acoustic phonons are important for carrier
excess energies smaller than the LO phonon energy.10,12

In the present paper we have employed time-resolved
x-ray diffraction using the femtosecond “slicing” source at
the Swiss Light Source �SLS� �Ref. 13� to investigate the
fluence dependence of the lattice heating time in laser-
excited InSb. A model for the laser-excited strain waves is
developed assuming that energy transfer from photoexcited
carriers to the lattice is mediated mainly by LO phonons. We
give an analytical expression for the laser-induced strain
wave that takes into account the energy-transfer time from
the excited electrons to the lattice. This model is an exten-
sion of the Thomsen model; it produces Thomsen-type strain
profiles in the limit of instantaneous heating �i.e., when the
lattice heating time tends to zero�. The x-ray diffraction from
a laser strained crystal is calculated using the Takagi-Taupin
dynamical theory for the depth-dependent strain gradients.14

We find that the lattice heating time does affect the time
evolution of the x-ray diffracted intensity during carrier-
lattice thermalization.

The paper is organized as follows. In Sec. II we briefly
describe the experimental setup. Based on results from pre-
vious work on lattice heating and strain wave generation,
Sec. III discusses the effect of laser heating on the strain
wave. Here we present a model that can be used to calculate
strain wave profiles, including the lattice heating time. In
Sec. IV we calculate the x-ray diffraction from a strained
crystal. In Sec. V we present and discuss our experimental
results in the framework of models presented in two previous
sections. Finally, in Sec. VI we present the conclusions of
our work.

II. EXPERIMENTAL SETUP

The experiment was performed at the SLS using a tunable
femtosecond undulator hard x-ray source. Short 140�30 fs
x-ray pulses are generated using the electron-beam slicing
technique13,15 at a repetition rate of 1 kHz. Two mirrors focus
the x-ray beam onto the sample. The first is a horizontally
mounted grazing incidence toroidal mirror placed 15 m be-
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fore the sample that both collimates the beam vertically and
brings the x rays to a horizontal focus of 250 �m at the
sample. The second mirror is an elliptically bent grazing in-
cidence optic positioned 43 cm before the sample. This mir-
ror focuses the beam vertically to less than 10 �m. Between
this last mirror and the sample, a double multilayer
�Mo /B4C, 25 Å period� monochromator selects an x-ray en-
ergy of 5.9 keV with a bandwidth of 1.2%. At a variable time
relative to the arrival of the x-ray pulses, a p-polarized fem-
tosecond laser pump pulse ��=800 nm, full width at half
maximum �FWHM�=120 fs� excites the sample with a 16°
incidence angle, as measured from the crystal surface.

The x-ray diffraction measurements were performed on an
asymmetrically cut InSb single crystal �500 �m thick� as
drawn in Fig. 1. The surface of the crystal was cut to an
angle �=15.5° from the �111� lattice planes. At 5.9 keV
x-ray energy the �111� Bragg angle is 16.3°. The grazing
angle of incidence of x-rays with respect to the surface was
�i=�B−�=0.8°, and the angle of the exiting x-ray beam with
respect to the crystal surface was �e=�B+�=31.8°. The sig-
nal was measured by an avalanche photodiode detector.

The asymmetric Bragg geometry provides a better match
between the penetration depths of laser and x rays than does
a symmetric diffraction geometry. At grazing incidence
angles below 1° at these energies in InSb, photoabsorption of
x rays limits the penetration into the crystal. Under this ap-
proximation, the x-ray penetration depth can be written as

�x =
1

�
� sin��B − ��

1 + �b� � , �1�

where � is the linear absorption coefficient and b is the
asymmetry parameter defined as b=−sin��B−�� /sin��B+��.
For x rays at 5.9 keV, ��3.144	105 m−1 �Ref. 16� and Eq.
�1� gives a penetration depth �x�43 nm.

The laser spot size on the sample was approximately
seven times larger than x-ray spot size to ensure probing of a
homogeneously excited area. The loss in temporal resolution
due to the size of the x-ray beam and the angle between the
pump and x-ray beams was less than 90 fs.

III. GENERATION OF STRAIN WAVES

The fundamental interactions which occur during and fol-
lowing the absorption of subpicosecond, above-band-gap-
energy laser pulses have been described by many authors.17

In this section we give a brief summary of the processes that
are relevant to our work and the necessary considerations to
incorporate the effects of lattice heating. The main objective
of this section is to develop an expression for the lattice
temperature that will be presented in Sec. III A which we
will use in Sec. III B to model strain waves and subsequently
in the analysis and discussion of the experimental results.

A. Lattice heating

When a semiconductor crystal is excited with visible or
near-infrared photons of energy 
� larger than the energy
gap Eg, electrons are excited out of valence-band �VB� states
into conduction-band �CB� states. Neglecting recombination
and diffusion during excitation, the evolution of the carrier
density profile during and immediately after the laser pulse
can be described by the following partial differential equa-
tions for the carrier density Ne�z , t� and the pump intensity
I�z , t� �Ref. 18�:

�

�z
I�z,t� = − ��0 + �fc�z,t� + �TPAI�z,t��I�z,t� �2�

and

�

�t
Ne�z,t� = ��0 +

1

2
�TPAI�z,t�� I�z,t�


�
. �3�

Here, z denotes the spatial coordinate perpendicular to the
surface, �0 and �TPA account for linear and two-photon ab-
sorption �for InSb at �las=800 nm, �0�1.087	107 m−1

and �TPA�8	10−5 m /GW�,19,20 and intraband free-carrier
absorption is calculated using the Drude model for the di-
electric constant21 �Ne�, �fc	2 / �2
1+
�1

2+2
2��, where

1�Ne� and 2�Ne� are the real and imaginary parts of �Ne�,
respectively. These equations can be solved using boundary

conditions I�z=0, t�= I0e−t2/�0
2

and N�z , t=0�=N0, where N0
�2	1016 cm−3 is the equilibrium carrier concentration at
T=300 K.

Following Ref. 22 the evolution of the carrier density at
later times can be described by the differential equation

�Ne

�t
= Da

�2Ne

�z2 − CaNe
2. �4�

Here, the first term on the right-hand side describes the car-
rier diffusion characterized by the ambipolar diffusion coef-
ficient Da that depends in general on the carrier density and
temperature.23,24 For InSb under high carrier density �on the
order of 1020 cm−3� and excess energy �about 1 eV� condi-
tions Da�40 cm2 /s has been deduced from optical reflec-
tivity measurements.22 For carrier densities on the order of
1021 cm−3 band-gap renormalization23,24 slows down the dif-
fusion; in the case where this effect is ignored, the carrier
density in the excitation depth is not more than 20% larger
because of the large Auger recombination rate at these den-
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FIG. 1. Scheme of the asymmetric Bragg geometry. The grazing
angle of incidence of x rays with respect to the crystal surface is
denoted by �i; � is the asymmetry angle, �B is the Bragg angle, �e

is the exit angle, � is the angle between the laser beam and the
crystal surface, and � is the laser penetration depth.
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sities. Auger recombination characterized by the recombina-
tion coefficient Ca is described by the second term. In highly
excited InSb, due to the screening of the Coulomb potential
that mediates the carrier-carrier interaction, an Auger recom-
bination rate with quadratic dependence on Ne is shown to be
more successful, with Ca�1.5	10−9 cm3 /s.22 Other re-
combination mechanisms, such as radiative recombination,
are negligible for time scales �1 ns �Ref. 11�. This equation
does not distinguish between the � and L valleys in the CB.
However, by using the model described in Ref. 25 �including
diffusion in the � valley with ambipolar diffusion coefficient
Da and recombination in both � and L valleys with the same
Auger recombination coefficient Ca� and assuming an inter-
valley scattering time �→L comparable to the laser-pulse
duration, L→� scattering time of 1 ps, and optical phonon
emission time of 150 fs, the time evolution of the carrier
density differs not much from that computed using Eq. �4�,
with discrepancies smaller than 30% at times �5 ps,
whereas at later times the discrepancy is larger but the values
of carrier density are of the same order magnitude. Variation
of the above-mentioned scattering times by 	40% increases
the discrepancy by 	14%.

A monochromatic laser pulse excites electron-hole pairs
at specific points in the band structure determined by the
condition Ec�k�−Ev�k�=
�, where Ec, Ev, and 
� are the
CB, VB, and laser photon energies, respectively. The big
difference in the curvatures of the CB and VB �Ref. 27� at

��1.55 eV implies that most of the excess energies �Ec
�c=e ,h for electrons and holes, respectively� reside initially
in the electrons rather than in the holes.50 Although the ex-
cited carriers initially have a nonthermal distribution, scatter-
ing processes such as carrier-carrier �and to lesser extend
carrier-phonon� scattering thermalize electrons and holes in a
very short time scale on the order of 100 fs.11,28 Under the
assumption that most of the photon energies are translated
into the kinetic energy of the electrons, we may estimate the
electron temperature Te0 as

Te0 �
2�Ee

3kB
, �5�

where kB is the Boltzmann constant.
It is generally recognized that in semiconductors of polar

character, carriers lose their excess energy primarily by emit-
ting LO phonons via Fröhlich interaction.11,29,30 This interac-
tion favors optical phonons near the center of the Brillouin
zone �BZ� since the rate matrix elements are proportional to
1 /q2, where q is the phonon wave vector.31 If excitation of
carriers takes place in the � valley, the photoexcited carrier
density is high ��1020 cm−3� and the energy of the photo-
excited carriers is larger than that of the side valley mini-
mums �L and/or X�, the electrons can scatter quickly �on the
order of 100 fs� to these valleys.51 The electrons in the side
valleys return back slowly �on a time scale �1 ps� to the �
valley.12,25 In this case they may act to reheat the electrons in
the � valley and slow the lattice heating.

In our analysis we will assume that the transfer of energy
from electrons to LO phonons, characterized by a character-
istic time �op, will lead to an optical phonon population in
excess of the equilibrium value.11 Fröhlich interaction favors

BZ center phonons, however the maximum wave vector qmax
of the LO phonons that interact with the electrons depends
on the excess energy of the electrons and the CB curvature
and can be on the order of 107 cm−1.52 The LO phonons
decay into acoustic phonons through anharmonic interaction
with a characteristic time constant �ap.

10,32 This later interac-
tion can be considered to bring the optical phonons into equi-
librium with other lattice phonon modes.11,32 Quasiequilib-
rium distributions for all three systems �electrons, LO
phonons, and the lattice� are assumed to be established so
that the electrons, optical phonons, and lattice have time-
dependent temperatures Te, TLO, and Tl. The temporal and
spatial evolutions of the system composed of electrons, LO
phonons, and the lattice can be described by a set of three
coupled nonlinear partial differential equations

Ce
�Te

�t
=

�

�z
��ECB + 2kBTe��Da

�Ne

�z
�� +

�

�z
�Ke

�Te

�z
�

− Ce�Te − TLO

�op
� + �Eg +

3

2
kBTeHe�CANe

2, �6�

CLO
�TLO

�t
= Ce�Te − TLO

�op
� − CLO�TLO − Tl

�ap
� , �7�

and

Cl
�Tl

�t
= CLO�TLO − Tl

�ap
� , �8�

where ECB is the CB edge, Ce is the electronic heat capacity,
CLO is the LO phonon heat capacity, Cl is the lattice heat
capacity, and Ke is the electronic thermal conductivity.33 The
electronic heat capacity is taken as

Ce =
�

�Te
�3

2
NekBTeHe� , �9�

where He is a degeneracy factor which depends on the elec-
tron energy and temperature.53 The LO phonon heat capacity
is calculated by assuming that the phonon occupation num-
ber depends only on ELO and TLO, where ELO is the LO
phonon energy near the BZ zone center �for InSb, ELO
�0.024 eV �Ref. 34��; this implies a LO phonon heat capac-
ity that is similar to the Einstein model of heat capacity
including only the LO phonon branch.54 In Eqs. �6� and �8�
the cooling of electrons due to the deformation-potential
scattering with acoustic phonons is not taken into account
since in polar semiconductors this cooling mechanism is
thought to become significant for carrier energies less than
ELO.10 Following Ref. 35, the energy-loss rate of electrons to
acoustic phonons through deformation-potential scattering is
more than a factor of 10 smaller than that needed to increase
the lattice temperatures within 10–15 ps to the values ob-
served in the experiment. Reference 35 describes the relax-
ation of electrons in a metal through deformation-potential
scattering. It assumes a parabolic band and chemical poten-
tial equal to the Fermi energy which, depending on Ne and
Te, is typically larger than the quasi-Fermi levels in semicon-
ductors. In this case the Fermi distribution function fe is
larger than that of a semiconductor, however since the pho-
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non emission rate is �fe�Ee−
�AP��1− fe�Ee��, with 
�AP
being the acoustic phonon energy �typically, �10 meV�, the
difference in chemical potentials does not have a large im-
pact on the phonon emission rate.

The left-hand side �lhs� of Eq. �6� represents the rate of
change of the energy density of the electron system. The first
two terms on the right-hand side �rhs� of Eq. �6� represent the
rate of change of the electronic energy density due to diffu-
sion, derived from the relaxation-time approximation of the
Boltzmann equation.33,36 The third term describes the rate of
energy density transfer from electrons to the LO phonons.
The emission of LO phonons takes place within hundreds of
femtoseconds, but the decay of phonon population has been
observed to be several picoseconds;11,30 this decay time is
long enough that a large nonequilibrium phonon population
is created within 1–2 ps after the excitation. Based on this
observation we assume that the term describing the rate of
energy transfer to the LO phonon system is of this form. The
fourth term describes the rate of energy density given to the
electron system by Auger heating. In every Auger recombi-
nation event, the recombination energy 	Eg+ �3 /2�kBTeHe is
transferred to another electron in the CB.37 The energy den-
sity given to the electron system is written as a product of the
recombination energy and Auger recombination rate.

In Eq. �7� the lhs describes the rate of change of the
energy density of the LO phonon population; the first term
on the rhs represents the rate of energy density LO phonons
gain from the electrons and the second term represents decay
into acoustic phonons. The LO phonons have a small disper-
sion and thus small group velocity. Taking a dispersion of 4
meV over �q=� /a, where a=6.479 Å is the lattice constant
�Ref. 34�, the group velocity vLO�1.25	105 cm /s. Assum-
ing a LO phonon lifetime �ap=9 ps, we obtain a propagation
length vLO�ap�11 nm, which is about 1/8 of the laser pen-
etration depth. We can conclude that LO phonons are trapped
in the photoexcited region and do not propagate significantly.

In Eq. �8�, the lhs describes the rate of change of the
energy density of the lattice, whereas the rhs represents the
rate of energy density which the lattice gains from optical
phonons. Diffusive thermal transport during the first few pi-
coseconds ��15 ps� is neglected because the estimated dif-
fusion length is about 1/7 of the laser penetration depth.

By solving Eqs. �2� and �3� we obtain the initial density
profile for Eq. �4� �see Fig. 2�. The solution of Eq. �4� is used
then in Eqs. �6�–�8�. The initial electron temperature is taken
from Eq. �5� with �Ee=
�−Eg�1.38 eV and the initial LO
phonon and lattice temperature are 300 K. The crystal sur-
face is assumed to be impermeable for carriers and carrier
energy �i.e., at z=0, �Ne /�z=0, and �Te /�z=0 for all times�.
Da and ECB are taken as constant and the degeneracy factor
He=1.55 Figure 3 shows the evolution of electron, phonon,
and lattice temperatures for a laser fluence of 5 mJ /cm2,
�op=2 ps, and �ap=6 ps. The peak in electron temperature is
caused by Auger recombination that heats the electron sys-
tem through the term 	Te �cf. Eq. �6��. The LO phonon
temperature increases over a time 	�op to a maximum value
of about 1100 K. Although this maximum value of TLO ex-
ceeds the lattice melting temperature Tm=820 K, the rela-
tively high average frequency of LO phonons means that the
actual magnitude of the average mean-square displacement

of atoms is considerably lower than it would be if the lattice
reached this temperature. We estimate using the equipartition
theorem that this temperature corresponds to a mean-square
amplitude of atomic vibrations that is 3.9% of the nearest-
neighbor distance �2.793 Å� well below the Lindemann
melting criterion �	10% of the nearest-neighbor
distance�.38,39 The lattice temperature, on the other hand, in-
creases to a maximum value of about 500 K.

To avoid the computational difficulty of fitting the data to
a strain wave arising from the thermal stress derived from an
exact solution of Eqs. �6�–�8�, we follow Ref. 3 and observe
that the general shape of the lattice temperature is well de-
scribed by an exponential function of the form

Tl�t� = T0 + �Tl�1 − e−t/�� . �10�

The rise time �, hereafter referred to as lattice heating time,
depends strongly on the phonon decay time �ap. Figure 4

FIG. 2. Evolution of carrier density computed using Eq. �4�.
Inset: Spatial distribution of carrier density at the end of laser pulse
computed using Eqs. �2� and �3� compared to the analytic expres-
sion Nmaxe−z/�. This distribution is considered as an initial condition
for Eq. �4�. The initial condition for Eq. �3� is the equilibrium car-
rier concentration at room temperature �2	1016 cm−3�. The tem-
poral profile of the laser intensity is a Gaussian of 120 fs FWHM.

FIG. 3. The dependence of electron, optical phonon and lattice
temperatures computed using Eqs. �6�–�8�.

KRASNIQI et al. PHYSICAL REVIEW B 78, 174302 �2008�

174302-4



compares lattice temperatures computed using Eq. �8� corre-
sponding to optical phonon decay times �ap of 3 and 8 ps
with profiles of functional form �10� with rise times � of 3
and 8 ps, respectively.

B. Strain waves

The transfer of energy to the lattice leaves the lattice in a
highly stressed state, which is eventually relieved by under-
going thermal expansion. Following excitation, the lattice
moves toward the new equilibrium state �corresponding to an
expanded state� but overshoots and coherently oscillates over
a range of frequencies, giving rise to the coherent acoustic
pulse, a strain wave.3

Thomsen et al.1 presented a thermoelastic model of strain
which describes the generation and propagation of a laser-
induced coherent strain pulse, hereafter referred to as the
Thomsen model. In this model, an ultrafast laser pulse is
absorbed and deposits a significant amount of energy near
the crystal surface. If the electron-phonon relaxation time is
extremely fast �i.e., the lattice is heated instantaneously�, this
absorption will generate an instantaneous thermal stress

�th = − 3�B�Tl�z� , �11�

with

�Tl�z� = �1 − R�
F

�Cl
exp�−

z

�
� , �12�

where � is the linear-expansion coefficient, B is the bulk
modulus, R is the reflectivity of the sample, F is the laser
fluence, Cl is the lattice heat capacity, and � is the laser
penetration depth. For InSb, �=4.7	10−6 �Ref. 40�, B
=46 GPa �Ref. 26�, Cl=0.832	106 �Ref. 40�, and �
�92 nm �at 800 nm �Ref. 19��.

With thermal stress of the form in Eq. �11� which assumes
an instantaneous conversion of the laser energy to heat, the
laser-induced strain wave ��z , t� is1

��z,t� = 3�1 − R� F�B
�v2�Cl

exp�− z/���1 −
1

2
exp�− vt/���

−
1

2
exp�− �z − vt�/��sgn�z − vt�� , �13�

where � is the mass density and v is the longitudinal sound
velocity. For InSb, �=5770 kg /m3 �Ref. 26� and v
=3900 m /s.6 Equation �13� represents a lattice strain wave.
The lattice strain profile is shown in Fig. 5 for six different
times. It is seen that the resulting lattice motion corresponds
to an acoustic pulse propagating into the solid at the velocity
of sound. The pulse consists of a region of expansion �or
positive strain� followed by a region of compression �nega-
tive strain�.

In a more realistic model, one needs to consider the fact
that the excitation energy initially placed into the carrier sys-
tem is not transferred instantaneously to the lattice. To incor-
porate the time needed for excitation energy to be transferred
to the lattice, the thermal stress is written in the form

�th�z,t� = − 3�B�Tl�z,t� − T0� , �14�

where Tl�z , t� is the lattice temperature and T0=300 K.
Using the arguments in Sec. III A that the lattice tempera-

ture increase over the energy-transfer time is almost �with
the largest discrepancy not more than 5%� of the functional
form given by Eq. �10�, the thermal stress is written in the
form

�th�z,t� = − 3�B�1 − exp�− t/���Tl
eq exp�− z/�� , �15�

where Tl
eq is the lattice temperature when the equilibrium

with carriers is reached. Here, heat conduction is neglected.
The shape of the strain wave is determined by the value
Dl / ��v�, where Dl is the thermal diffusion coefficient. For
InSb, Dl=0.16 cm2 /s and Dl / ��v�=0.04, and according to
Ref. 1, the neglect of heat conduction makes only a small
change in the wave shape. However, the magnitude of the
strain �especially in the incoherent part� near the target sur-
face will be larger than that where heat conduction is con-

FIG. 4. Approximation of calculated lattice temperature profiles
�circles: �ap=3 ps, squares: �ap=8 ps� with a function of the form
�10� for �=3 and 8 ps, respectively.

FIG. 5. Laser-generated strain waves at times t=2, 6, 10, 20, 30,
and 40 ps after excitation. The strain waves are calculated using Eq.
�13� for InSb at a laser fluence of 3 mJ /cm2.
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sidered because the laser-deposited heat is trapped in the
excitation region. The difference in magnitudes of the strain
with and without consideration of heat conduction depends
upon the time delay �t between the pump �laser� and the
probe �x rays�. For �t�40 ps, this difference will be less
than 12%, while in time range 40–80 ps, up to 27%. For
�t�500 ps, heat conduction has a large effect on the shape
of the strain wave.4

Such a functional form of the thermal stress was first used
in Ref. 3 with � representing the phenomenological electron-
phonon coupling time. There, an analytic expression for the
coherent part of the strain wave has been given. In this work
� represents the LO phonon decay time �cf. Fig. 4�, and with
thermal stress of the form given by Eq. �15� the full strain
wave �coherent+incoherent parts� is obtained which in the
limit �→0 reproduces the Thomsen strain wave. By using
Eq. �15� and Eqs. �4�–�6� in Ref. 1 one can obtain an ana-
lytical expression for the laser-induced displacements u�z , t�
and subsequently for the strain ��z , t�=�u�z , t� /�z. The solu-
tions are56

�i� z�vt

u�z,t� = G1�z,t� +
1

2v
G2�z,t� ,

G1�z,t� = A1�1 − e−v/��t−z/v���1 − e−1/��t−z/v�� ,

G2�z,t� = A2
�2e−2z/�

v
 �e2z/� − 1�

� − v�
���1 − e�z−vt�/� �

+ v��e�z−vt�/�v�� − 1�� + �ez/� − 1�2� + A2
�2e−2z/�

v

	
v�e−t/��2v�ez/� − ez/�v���� + v� + e2z/��v� − ����

�v2�2 − �2�
,

�16�

�ii� z�vt

u�z,t� = A2�2 e−z/� cosh�vt/�� − 1

v2

+
��v�e−t/� − v� cosh�vt/�� + � sinh�vt/���

v�v2�2 − �2� � ,

�17�

where

A1 = −
3�B�

v2�
�Tl

eq, �18�

A2 =
3�B

��
�Tl

eq. �19�

If we use �Teq= �1−R�F / ��Cl� in Eqs. �18� and �19� and take
the limit �→0, we retrieve the traditional Thomsen strain
profile. Calculated strain profiles using Eqs. �16�–�19� are
shown in Fig. 6. The effect of the heating time � is evident.
We see that the strain near the surface �z=0� increases over
the time �, in contrast to Fig. 5 where it is almost time

independent, and the boundary between the expansive and
compressive regions is smoothed. Figure 7 shows the strain
wave profile 20 ps after excitation for different heating times
�.

IV. X-RAY DIFFRACTION IN LASER-EXCITED
CRYSTALS

X-ray diffraction in the presence of laser-induced strain is
calculated using the Takagi-Taupin �TT� dynamical theory
for the depth-dependent strain gradients.14 This theory has
been successfully applied to model x-ray diffraction from
coherent acoustic phonons.2,3,6,7,11,41 Within this theory the
differential equation for the ratio of the complex field ampli-
tudes of the diffracted x-rays Dh and incident x-rays D0 can
be written as14

d�

dz
=

�i

�
��2 − 2S��h����� −

��h�
�h

� , �20�

where

FIG. 6. Laser-generated strain waves at times t=2, 6, 10, 20, 30,
and 40 ps after excitation using a heating time �=10 ps. The strain
waves are calculated using Eqs. �16�–�19� for InSb at laser fluence
of 3 mJ /cm2.

FIG. 7. Laser-generated strain wave 20 ps after excitation using
heating times �=0.05, 4, 6, 8, and 10 ps. The strain waves are
calculated using Eqs. �16�–�19� for InSb at laser fluence of
3 mJ /cm2.
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� =
1

S�P�

��h�

�0

�h̄


�h�h̄

Dh

D0
, �21�

� =
�
�0��h�

�P�
�h�h̄

, �22�

��� =

�0/��h�

�P�
�h�h̄
���� + C��sin 2�B −

1

2
�0��h

�0
− 1�� ,

�23�

C = cos2 � tan �B + sin � cos � , �24�

and

�h =
r0�2Fh

�V
. �25�

Here ��=�−�B, �0�h� are the direction cosines of the inci-
dent �diffracted� beam, � is the x-ray wavelength, ��z , t� is
the strain, Fh is the structure factor, r0 is the classical elec-
tron radius �r0=2.818	10−15 m�, V is the volume of the
unit cell, S�x� is the sign function, and P is the polarization
factor. In this experiment the x rays are s polarized and P
=1. Equation �20� is solved analytically �see the Appendix�
under the condition that deep in the crystal �z=zm� where the
strain vanishes ��zm�=�p, where �p is the value of � for a
perfect crystal.14,42 From Eq. �21� one can find Dh /D0 and
finally the rocking curve of the crystal

R =
��h�
�0
�Dh�z = 0�

D0�z = 0�
�2

. �26�

Figure 8 compares the unperturbed rocking curves predicted
by Eq. �26� to the rocking curve of a thick crystal predicted

by the dynamical theory of x-ray diffraction under grazing
incidence conditions.43 The rocking curve computed by the
grazing incidence x-ray diffraction theory compares well to
that using TT theory indicating that the negligence of x-ray
reflection does not have any impact on the rocking curve.

The laser-induced strain wave ��z , t� is a superposition of
coherent acoustic phonons with wave vectors q approxi-
mately centered about the inverse of the laser penetration
depth.6,41 Due to the coherent acoustic phonons of wave vec-
tor q the time-resolved x-ray diffraction intensity will oscil-
late with an angular frequency � given by41

� � vq �
v��B�Gh�

tan �B cos � + sin �
, �27�

where ��B is the angular position off the Bragg peak and Gh
is the reciprocal-lattice vector. Equation �27� indicates that
by varying ��B different phonon modes with frequencies
����B� can be observed. Figure 9 shows the normalized
time-dependent x-ray diffracted intensity for ��B=0.06° and
0.15°. The time evolution of the diffracted intensity has ba-
sically two origins. First, the reduction of the intensity is due
to a shift of the rocking curve. Second, this reduction is
superimposed by an interference of x-rays originating from
two sources: �a� the bulk x-ray diffraction and �b� the diffrac-
tion from the strain wave. The diffraction from the strain
wave leads to the oscillations in the time-dependent dif-
fracted intensity with periods T=2� /�=48 and 18 ps, re-
spectively, which are comparable to those predicted by Eq.
�27�, which are 49 and 20 ps. The visibility of the temporal
oscillations is reduced with increasing bandwidth of the x
rays.41 The inset of Fig. 9 shows the effect of the x-ray band-
width on the time evolution of the diffracted intensity. The
oscillation amplitude of the time-dependent diffracted inten-

FIG. 8. Comparison of the unperturbed rocking curve for InSb
�5.9 keV, 111 reflection, �=15.5°� calculated using the Takagi-
Taupin theory and the thick crystal rocking curve �grazing incidence
x-ray diffraction �GID-D�� and x-ray reflection �GID-R� calculated
using the theory of x-ray diffraction under grazing incidence
conditions.

FIG. 9. Time evolution of the normalized diffracted intensity
calculated using Eqs. �20�–�26� at two different positions on the
rocking curve, ��B=0.06° and 0.15°. The laser-induced strain is
calculated using Eqs. �16�–�19� with �=5 ps and Tl

eq=240 K. In-
set: The effect of the x-ray bandwidth on the time evolution of the
diffracted intensity. The bandwidth of the beam is taken into ac-
count by convolving the calculated rocking curves by a Gaussian
function of FWHM given by Eq. �28�.
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sity decreases with the increase in the bandwidth of the x
rays.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we describe the effects of carrier-lattice
thermalization on laser-induced strain waves. In the experi-
ment, we have measured the evolution of x-ray diffraction
intensity as a function of laser fluence below the damage
threshold of 10–11 mJ /cm2.6,44,57 Figure 10 shows the time-
dependent diffracted intensity measured at +0.06° from the
unperturbed Bragg peak with fluences of
�2.8�0.6� mJ /cm2, �5.6�1.2� mJ /cm2, and
�8.4�1.8� mJ /cm2. Time zero has been determined by us-
ing x-ray diffraction to probe laser-induced coherent optical
phonons in bulk bismuth.13 The effective time resolution is
195�25 fs FWHM including time drifts of 70 fs measured
for several days. This enables multishot data accumulation
during extended consecutive time scans.

The fluence-dependent effects are immediately apparent.
First, the value of the intensity minimum decreases with in-
creasing fluence. Second, at the lowest fluence
�	2.8 mJ /cm2� over the first 15 ps following the laser ex-
citation, the rate of decrease in the diffracted signal is slower
than at higher fluences �see the arrow identified with ��.

In order to extract physical information from the data pre-
sented in Fig. 10, we use the model presented in Sec. III. The
x-ray diffraction is simulated by using Eqs. �20�–�26�. The
bandwidth of the double multilayer monochromator �E /E is
taken into account by convolving the calculated rocking
curves by a Gaussian function of FWHM

��BW = ��E

E
�tan � . �28�

Oscillations in the time-dependent diffraction intensities
shown in Fig. 10 are washed out due to the large bandwidth
of the x rays. The contribution of the Debye-Waller factor in

the diffracted intensity is neglected. Over the temperature
range up to 600 K and for the mean-square displacement up
to 8% of the nearest-neighbor distance the decrease in the
diffracted intensity due to the Debye-Waller effect for the
111 reflection is �4%. Figure 11 shows the comparison be-
tween the simulated and measured rocking curves for the
unperturbed �zero strain� and perturbed crystals. Once the
unperturbed rocking curve is reproduced, we simulate rock-
ing curves with strain profiles computed using Eqs. �16�–�19�
by changing only the fluence F and the heating time �,
whereas the other parameters are held fixed. The discrepan-
cies in the small-angle side �	26%� are due to the neglect of
heat conduction in the calculation of the strain wave. In this
case the strain will be larger than that where heat conduction
is considered because the laser-deposited heat is trapped in
the excitation region; the rocking curve is shifted more in the
small-angle side and is broader than that with heat conduc-
tion included. Since the small-angle side of the rocking curve
is more sensitive to thermal expansion that is proportional to
the lattice temperature, the discrepancies due to the neglect
of heat conduction are pronounced more there. During the
first 20 ps following the laser excitation when the effect of
the lattice heating time is large, the discrepancies on the
positive angle side of the rocking curve are smaller than 4%
whereas on the negative angle side up to 7%. For time delays
between 20 and 70 ps the discrepancies due to the neglect of
heat conduction are about 5% in the positive angle side and
up to 22% on the negative �small� angle side.

As shown in Fig. 12, the simulations predict a faster in-
tensity drop for �=0. In the instantaneous heating limit the

FIG. 10. Measured time-dependent normalized diffracted inten-
sities from InSb with step size of 670 fs for laser fluences 2.8, 5.6,
and 8.4 mJ /cm2. The time scans are measured at 5.9 keV
�2.101 Å�, 111 reflection, ��15.5°.

FIG. 11. Comparison between the simulated and the measured
rocking curves. The calculated rocking curves are convolved with a
Gaussian function corresponding to �E /E�1.1%. In the perturbed
crystal case, the rocking curve is measured at a laser fluence of
about 7 mJ /cm2 and time delay �t�75 ps. In the simulations we
have used F=7 mJ /cm2, �t=75 ps, and �=0 ps. Simulation A
does not take into account the effect of heat conduction. Simulation
B accounts for heat conduction by assuming 26% lower surface
temperature and 19% larger penetration depth. These values were
estimated by solving Eq. �8� with heat conduction term Dl�

2Tl /�z2

�where Dl is the thermal diffusion coefficient� included in the rhs,
initial condition Tl�z , t=0�=T0 exp�−z /��, and boundary condition
�Tl�z=0, t� /�z=0.
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strain is initially large �cf. Fig. 5�. As the strain wave propa-
gates inside the crystal, the x rays probe a large-amplitude
strained region with a thickness that increases with the speed
of sound. On the other hand, assuming a finite lattice heating
time �, the strain which is initially zero increases during the
time � as shown in Fig. 6. In this case the x rays probe a
strained region which increases with the speed of sound, but
whose amplitude increases with time. This gives rise to a
slower drop in the x-ray intensity compared to the instanta-
neous heating limit.

Experimental results are compared to simulations in Figs.
13 and 14. In the simulations, the lattice temperature increase
in the crystal surface predicted by Eq. �8� for fluences 2.8,
5.6, and 8.4 mJ /cm2 is 158, 240, and 295 K, respectively.
The expected excitation densities at these fluences are 1.1
	1021 cm−3, 2.3	1021 cm−3, and 3.3	1021 cm−3. In Fig.
13 the measured diffracted intensity for the fluence of
2.8 mJ /cm2 is compared to simulations assuming instanta-

neous heating of the lattice, i.e., �=0 ps. During the first
15–18 ps, the instantaneous heating time predicts a much
faster drop in intensity than the measured one. Assuming a
lattice heating time �=11�4 ps, simulations predict a slow
decrease in the diffracted intensity during this time in agree-
ment with the experimental results �see Fig. 14�.58 For higher
fluences of 5.6 and 8.4 mJ /cm2, a good agreement between
the experiment and calculations is found for �=5�2 and
4�1.5 ps, respectively. For time delays �20 ps the mea-
sured diffracted intensity is about 4% larger than that pre-
dicted by the simulations. This discrepancy is mainly due to
the omission of heat conduction in the calculation of the
strain profiles that results in larger strains and thus smaller
diffracted intensities.

Reproduction of the slow drop of the diffracted intensity
by including the heating time in the strain wave suggests that
this effect is a signature of the phonon dynamics subsequent
to carrier energy relaxation as discussed in Sec. III A, since
the lattice heating time is largely dependent on the optical
phonon decay time �cf. Fig. 4�. As the population of LO
phonons increases via energy transfer from the carriers, the
atoms undergo anharmonic motion. This anharmonicity
couples the LO phonons to acoustic phonons. In a similar
way, Chin et al.11 described the delay on the onset of the
time-dependent diffracted intensity from InSb. At a carrier
density above 1021 cm−3, they were able to describe their
observed effect by assuming a 2 ps LO emission time and 7
ps acoustic phonon generation time �i.e., LO phonon decay
time�. Since the heating time � depends strongly on the pho-
non decay time, the decrease in the lattice heating time with
increasing laser fluence suggests that the LO phonon decay
time decreases with increasing laser fluence �i.e., with in-
creasing excitation energy�. A similar effect has been ob-
served by time-resolved Raman studies of phonon lifetimes
in GaN which is a polar semiconductor like InSb. Tsen et
al.46 observed that the phonon lifetime of GaN decreases
from 2.5 to 0.35 ps when the e-h density increases from 1016

to 2	1019 cm−3. Although GaN, which is a polar and direct-
gap semiconductor, differs from InSb in terms of band-gap

FIG. 12. Calculated time-dependent diffracted intensity �at
+0.06° relative to the Bragg peak� assuming a strain history calcu-
lated using Eqs. �16�–�19�, with heating times �=0, 5, and 10 ps.

FIG. 13. Comparison of the measured time-dependent normal-
ized diffracted intensity �solid line� to simulations assuming strain
history given by using Eqs. �16�–�19� with �=0 ps �dotted line�.

FIG. 14. Comparison of measured time-dependent normalized
diffracted intensities shown in Fig. 10 to simulations assuming
strain history given by using Eqs. �16�–�19�.
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energy and band curvatures, the observations of Tsen et al.46

support the fact that the LO phonon decay depends strongly
on the electron density. Intervalley scattering may also influ-
ence the carrier density dependence of the lattice heating
time, but this should have the effect of increasing the lattice
heating time as the fluence increases, which runs counter to
our observations.

The matrix elements of the anharmonic decay rate depend
on the phonon occupation number47 which increases with
increasing LO phonon temperature and thus with increasing
laser fluence. This indicates that LO phonon decay rate in-
creases �i.e., the phonon lifetime decreases� with increasing
laser fluence �i.e., with increasing electron density� which is
in accordance with our observations. However, Matulionis48

suggested that the dependence of LO phonon decay time on
carrier density can be explained by assuming that plasmons
are involved in LO phonon disintegration �LO phonons can
emit plasmons in the decay process�. Therefore, a more rig-
orous approach that considers the decay of LO phonons via
both acoustic phonons and plasmons is needed to provide a
plausible answer regarding the dependence of the LO pho-
non lifetime on the carrier density or laser fluence. To our
knowledge, the mechanism for the decay of LO phonons via
acoustic phonons and plasmons has not been worked out so
far.

VI. CONCLUSIONS

In conclusion, we have presented a study of laser-induced
strain waves in InSb over an intermediate fluence range
�	3–10 mJ /cm2�. We have presented a model that predicts
spatiotemporal evolution of strain waves during the lattice
heating time. In the instantaneous heating limit the model
predicts Thomsen-type strain waves. In the framework of
this model and the Takagi-Taupin dynamical theory for the
depth-dependent strain gradients we have studied the fluence
dependence of the transient x-ray diffraction signal. The net
result of this analysis is that the temporal evolution of the
diffracted signal indicates that the lattice heating time de-

creases with increasing fluence. This implies that the lifetime
of optical phonons decreases as the excitation energy in-
creases, similar to previous observations in other polar,
direct-band-gap semiconductors.46 Although the lifetime of
LO phonons in general is dominated by their decay into a
pair of acoustic phonons, the density dependence of the LO
phonon decay time is not fully understood46 and requires
further investigations.
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APPENDIX

Analytical solution of Eq. �20� is

��z� =
s�0 + �B�0 + C�tan�s�z − z0��
s − �A�0 + B�tan�s�z − z0��

, �A1�

where

��z0� = �0, �A2�

A =
�i

�
, �A3�

B = −
�i

�
S��h����, �A4�

C = −
�i

�

��h�
�h

, �A5�

and

s = 
AC − B2. �A6�

Hence the value of � at the depth z can be calculated by
knowing its value at z=z0.
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